Math Typesetting
Mathematical notation in a project can be enabled by using third party JavaScript libraries.
Installation
In this example we will be using \(\KaTeX\) .
- Create a macro under
/template/macros/math.html
with a macro namedmath
. - Within this macro reference the Auto-render Extension or host these scripts locally.
- Import the macro in your templates like so:
- To enable KaTex globally set the parameter
extra.math
totrue
in a project's configuration - To enable KaTex on a per page basis include the parameter
extra.math = true
in content files
Notes
- The MathJax library is the other optional choice, and you can set the parameter
extra.library
tomathjax
in a project's configuration - Use the online reference of Supported TeX Functions
- There is also a MathJax basic tutorial and quick reference guide on StackExchange.
Examples
Inline math
Inline math 1: \(\varphi = \dfrac{1+\sqrt5}{2}= 1.6180339887…\)
Find \(\{ x, y, z \} \in \N\) where:
$$::tex
\begin{cases}
x^2 + 7xy + y^2 = z^2 \\
3x^2 - xyz - y^2 = z^2
\end{cases}
::$$
Block math
$$::tex
\text{Find}\quad \{ x, y, z \} \in \N \quad\text{where}\quad
\begin{cases}
x^2 + 7xy + y^2 = z^2 \\
3x^2 - xyz - y^2 = z^2
\end{cases}
::$$
$$::tex
\def\arraystretch{1.5}
\begin{array}{c:c:c}
a & b & c \\ \hline
d & e & f \\
\hdashline
g & h & i
\end{array}
::$$
$$::tex
\mathcal L_{\mathcal T}(\vec{\lambda})
= \sum_{(\mathbf{x},\mathbf{s})\in \mathcal T}
\log P(\mathbf{s}\mid\mathbf{x}) - \sum_{i=1}^m
\frac{\lambda_i^2}{2\sigma^2}
::$$
$$::tex
\displaystyle \left( \sum_{k=1}^n a_k b_k \right)^2 \leq \left( \sum_{k=1}^n a_k^2 \right) \left( \sum_{k=1}^n b_k^2 \right)
::$$
$$::tex
\ce{x Na(NH4)HPO4 ->[\Delta] (NaPO3)_x + x NH3 ^ + x H2O}
::$$
$$::tex
\ce{Zn^2+ <=>[+ 2OH-][+ 2H+] $\underset{\text{amphoteres Hydroxid}}{\ce{Zn(OH)2 v}}$ <=>[+ 2OH-][+ 2H+] $\underset{\text{Hydroxozikat}}{\ce{[Zn(OH)4]^2-}}$}
::$$
$$::tex
\ce{Hg^2+ ->[I-] $\underset{\mathrm{red}}{\ce{HgI2}}$ ->[I-] $\underset{\mathrm{red}}{\ce{[Hg^{II}I4]^2-}}$}
::$$
$$::tex
% \f is defined as #1f(#2) using the macro
\f\relax{x} = \int_{-\infty}^\infty
\f\hat\xi\,e^{2 \pi i \xi x}
\,d\xi
::$$
$$::tex
\begin{align}
\sqrt{37} & = \sqrt{\frac{73^2-1}{12^2}} \\
& = \sqrt{\frac{73^2}{12^2}\cdot\frac{73^2-1}{73^2}} \\
& = \sqrt{\frac{73^2}{12^2}}\sqrt{\frac{73^2-1}{73^2}} \\
& = \frac{73}{12}\sqrt{1 - \frac{1}{73^2}} \\
& \approx \frac{73}{12}\left(1 - \frac{1}{2\cdot73^2}\right)
\end{align}
::$$
$$::tex
f(n) =
\begin{cases}
n/2, & \text{if $n$ is even} \\
3n+1, & \text{if $n$ is odd}
\end{cases}
::$$
$$::tex
\begin{array}{c|lcr}
n & \text{Left} & \text{Center} & \text{Right} \\
\hline
1 & 0.24 & 1 & 125 \\
2 & -1 & 189 & -8 \\
3 & -20 & 2000 & 1+10i
\end{array}
::$$
$$::tex
f\left(
\left[
\frac{
1+\left\{x,y\right\}
}{
\left(
\frac{x}{y}+\frac{y}{x}
\right)
\left(u+1\right)
}+a
\right]^{3/2}
\right)
::$$
$$::tex
% \require{extpfeil} % produce extensible horizontal arrows
\begin{array}{ccc} % arrange LPPs
% first row
% first LPP
\begin{array}{ll}
\max & z = c^T x \\
\text{s.t.} & A x \le b \\
& x \ge 0
\end{array}
& \xtofrom{\text{duality}} &
% second LPP
\begin{array}{ll}
\min & v = b^T y \\
\text{s.t.} & A^T y \ge c \\
& y \ge 0
\end{array} \\
({\cal PC}) & & ({\cal DC}) \\
\text{add } {\Large \downharpoonleft} \text{slack var} & & \text{minus } {\Large \downharpoonright} \text{surplus var}\\ % Change to your favorite arrow style
%
% second row
% third LPP
\begin{array}{ll}
\max & z = c^T x \\
\text{s.t.} & A x + s = b \\
& x,s \ge 0
\end{array}
& \xtofrom[\text{some steps skipped}]{\text{duality}} &
% fourth LPP
\begin{array}{ll}
\min & v = b^T y \\
\text{s.t.} & A^T y - t = c \\
& y,t \ge 0
\end{array} \\
({\cal PS}) & & ({\cal DS})
%
\end{array}
::$$
$$::tex
\begin{array}{rrrrrrr|r}
& x_1 & x_2 & x_3 & s_1 & s_2 & s_3 & \\ \hline
s_1 & -2 & 0 & -2 & 1 & 0 & 0 & -60 \\
s_2 & -2 & -4^* & -5 & 0 & 1 & 0 & -70 \\
s_3 & 0 & -3 & -1 & 0 & 0 & 1 & -27 \\ \hdashline
& 8 & 10 & 25 & 0 & 0 & 0 & 0 \\
\text{ratio} & -4 & -5/2 & -5 & & & & \\ \hline
s_1 & -2^* & 0 & -2 & 1 & 0 & 0 & -60 \\
x_2 & 1/2 & 1 & 5/4 & 0 & -1/4 & 0 & 35/2 \\
s_3 & 3/2 & 0 & 11/4 & 0 & -3/4 & 1 & 51/2 \\ \hdashline
& 3 & 0 & 25/2 & 0 & 5/2 & 0 & -175 \\
\text{ratio} & -3/2 & & 25/4 & & & & \\ \hline
x_1 & 1 & 0 & 1 & -1/2 & 0 & 0 & 30 \\
x_2 & 0 & 1 & 3/4 & 1/4 & -1/4 & 0 & 5/2 \\
s_3 & 0 & 0 & 5/4 & 3/4 & -3/4^* & 1 & -39/2 \\ \hdashline
& 0 & 0 & 19/2 & 3/2 & 5/2 & 0 & -265 \\
\text{ratio} & & & & & \dots & & \\ \hline
x_1 & 1 & 0 & 1 & -1/2 & 0 & 0 & 30 \\
x_2 & 0 & 1 & 1/3 & 0 & 0 & -1/3 & 9 \\
s_2 & 0 & 0 & -5/3 & -1 & 1 & -4/3 & 26 \\ \hdashline
& 0 & 0 & 41/3 & 4 & 0 & 10/3 & -330
\end{array}
::$$
$$::tex
\begin{pmatrix}
1 & a_1 & a_1^2 & \cdots & a_1^n \\
1 & a_2 & a_2^2 & \cdots & a_2^n \\
\vdots & \vdots& \vdots & \ddots & \vdots \\
1 & a_m & a_m^2 & \cdots & a_m^n
\end{pmatrix}
::$$
$$::tex
% \require{enclose}
\begin{array}{ccccccccc}
\Large{{A}} & \xrightarrow{0.1} & \Large{{B}} & \xrightarrow{0.2} & \Large{{C}} & \xleftarrow{0.3} & \Large{{D}} & \xleftarrow{0.4} & \Large{{E}}\\
\scriptsize{0.5}\large{\downarrow} & \scriptsize{0.6}\large{\searrow} & \scriptsize{0.7}\large{\downarrow} & \scriptsize{0.8}\large{\nearrow} & \scriptsize{0.9}\large{\downarrow} & \scriptsize{0.1}\large{\swarrow} & \scriptsize{0.2}\large{\downarrow} & \scriptsize{0.3}\large{\nwarrow} & \scriptsize{0.4}\large{\downarrow}\\
\Large{{F}} & \xrightarrow[0.5]{} & \Large{{G}} & \xrightarrow[0.6]{} & \Large{{H}} & \xleftarrow[0.7]{} & \Large{{I}} & \xleftarrow[0.8]{} & \Large{{J}}\\
\circlearrowright\tfrac12\\
\end{array}
::$$
$$::tex
\left. \left(3x\left(\frac{\left(\log(\frac{3x^2}{6}\right)^{\frac{-x^2}{8}}}{3x^{1/2}} \right) \right) \right|_{\;x=2}^{\;x=8}
::$$
$$::tex
\begin{align*}
V_{ijk}& = \begin{cases}
\dfrac{y_u+y_l}2 - \dfrac{x_u+x_l}2,& \text{if }x_u < y_l\\[15pt]
\dfrac1C \bigg[\dfrac{x_u^3-y_l^3}{6}+\dfrac{y_l^2+x_u^2}{2}x_l + (x_u-y_l)\dfrac{x_l^2}{2}+ \dfrac{y_u^2-x_u^2}{2}(x_u-x_l)& - (y_u-x_u)\dfrac{x_u^2-x_l^2}{2} \bigg],
\\[12pt]& \text{if }x_u\in\left[y_l,y_u\right]\\[15pt]
\dfrac1{x_u-x_l}\bigg[\dfrac{(y_u+y_l)^2}6 - \dfrac{y_u+y_l}2 x_l + \dfrac{x_l^2}2\bigg],& \text{otherwise}
\end{cases}
\end{align*}
::$$